Le faux DNB blanc, correction

3^{èmes} du Nouveau collège

Exercice 1:

N°	Question	Réponse A	Réponse B	Réponse C
1	La décomposition en produit de facteurs premiers de 24 est	2 x 3 x 4	2 x 2 x 2 x 3	2 x 2 x 6
2	Lequel de ces nombres est premier?	2 255	<mark>8 191</mark>	7 113
3	La roue B fait 2 tours, combien de tours fait la roue A ?	3 tours	4 tours	5 tours
4	Quelle est la longueur de PV? T 8,4 cm (TS) // (PV) R 3 cm	PV = 3 cm	PV = 20,16 cm	PV = 3,5 cm

Exercice 2:

- Il faut commencer par tracer le triangle ADE. Puis placer le point F, puis prolonger les côtés [AD] et [AE] pour placer les points B et C. Puis tracer la droite (FG) parallèle à (DE) passant par le point F.
- 2. Dans le triangle ADE, le plus long côté est [AD]. D'une part :

$$AD^2 = (7 cm)^2 = 49 cm^2$$

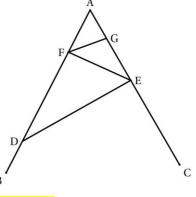
D'autre part

$$AE^2 + DE^2 = (4.2 \text{ cm})^2 + (5.6 \text{ cm}^2) = 17.64 \text{ cm}^2 + 31.36 \text{ cm}^2 = 49 \text{ cm}^2$$

L'égalité de Pythagore est vérifiée on a $AD^2 = AE^2 + DE^2$

Donc d'après la réciproque du théorème de Pythagore le triangle ADE est bien un triangle rectangle en E.

3. On sait que (FG)//(DE) et que les A, F, D et A, G, E sont alignés.



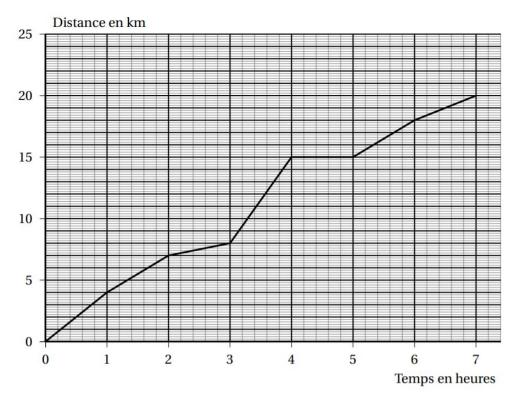
Donc d'après le théorème de Thalès on a : $\frac{DE}{FG} = \frac{DA}{FA} = \frac{AE}{AG}$

D'où :
$$\frac{5,6}{FG} = \frac{7}{2,5} = \frac{4,2}{AG}$$

$$FG = 5.6 \times 2.5 \div 7 = 2$$

Donc [FG] mesure 2 cm.

Exercice 3:



- 1. Ce graphique ne traduit pas une situation de proportionnalité car la représentation graphique n'est pas une droite même si elle passe par l'origine du repère.
- 2. On utilisera le graphique pour répondre aux questions suivantes. Aucune justification n'est demandée.
 - a. Quelle est la durée totale de cette randonnée ? 7h
 - **b.** Quelle distance cette famille a-t-elle parcourue au total? 20 km
 - c. Quelle est la distance parcourue au bout de 6 h de marche? 18 km
 - d. Au bout de combien de temps ont-ils parcouru les 8 premiers km? 3h
 - e. Que s'est-il passé entre la 4e et la 5e heure de randonnée ? Aucun kilomètre n'a été parcouru, peutêtre s'agit-il d'une pause.

3.
$$Vitesse = \frac{distance}{temps} = \frac{20 \text{ km}}{7 \text{ h}} \approx 2.9 \text{ km/h}$$

La vitesse moyenne de cette famille est d'environ 2,9 km/h, on ne peut pas dire que cette famille est expérimentée.

Exercice 4:

Programme de Nina	Programme de Claire
Choisir un nombre de départ	Choisir un nombre de départ
Soustraire 1.	Multiplier ce nombre par $-\frac{1}{2}$
Multiplier le résultat par -2 Ajouter 2.	Ajouter 1 au résultat

1.

Pro	ogramme de Nina	Programme de Claire	
Choisir un r	nombre de départ 🗦 🛚	Choisir un nombre de départ $ ightarrow 1$	
	1. → 1-1 = <mark>0</mark>	Multiplier ce nombre par $-\frac{1}{2} \rightarrow -\frac{1}{2} \times 1 = -\frac{1}{2}$	
Multiplier le Ajouter 2	e résultat par −2 → 2x0 = <mark>0</mark> → 0+2= <mark>2</mark>	Ajouter 1 au résultat $\rightarrow -\frac{1}{2} + 1 = \frac{1}{2} = 0,5$	

Si l'on choisi 1 comme nombre de départ, Nina obtient 2 et Claire 0,5 et <mark>2 est le quadruple de 0,5</mark> donc le résultat est effectivement 4 fois plus grand.

2. On effectue le programme à l'envers.

$$0 - 2 = -2$$

 $-2 : (-2) = 1$
 $1 + 1 = 2$

Donc, si l'on choisi le nombre 2 on obtient 0 à la fin avec le programme de Nina.

3. Hors programme pour ce DNB blanc.

Pour cela, choisissons \pmb{x} comme nombre de départ.

Programme de Nina	Programme de Claire
Choisir un nombre de départ $\rightarrow x$	Choisir un nombre de départ $\rightarrow x$
Soustraire 1. $\rightarrow x - 1$ Multiplier le résultat par $-2 \rightarrow (x - 1) \times (-2)$ Ajouter 2. $\rightarrow (x - 1) \times (-2) + 2$	Multiplier ce nombre par $-\frac{1}{2} \rightarrow -\frac{1}{2}x$ Ajouter 1 au résultat $\rightarrow -\frac{1}{2}x + 1$

$$(x-1)\times(-2)+2=-2x+2+2=-2x+4=\frac{4\times\left(-\frac{1}{2}+1\right)}{2}$$

Claire a raison.

Exercice 5:

1. Le plus rapide est Usain Bolt avec 19,78 s.

$$Vitesse = \frac{distance}{temps} = \frac{200 \text{ m}}{19,78 \text{ s}} \approx 10,11 \text{ m/s}$$

Usain Bolt a couru à une vitesse moyenne d'environ 10,11 mètre par seconde.

2.
$$M = \frac{19,78+20,02+20,12+20,12+20,13+20,19+20,23+20,43}{8}$$

$$M = 20,1275 \approx 20,13$$

Le temps moyen de cette finale est d'environ 20,13 seconde.

3. En 1964 à Tokyo, la moyenne des performances des athlètes sur le 200 m hommes était de 20,68 s et l'étendue était de 0,6 s.

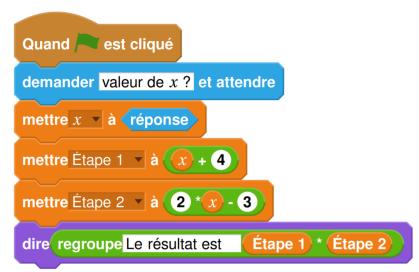
En 2016, le temps moyen est d'environ 20,13 s et l'étendue de 0,65 s.

On observe donc que depuis 1964 les coureurs ont gagné en vitesse et que l'écart entre le premier et le dernier finaliste n'est pas plus grand.

Exercice 6:

Laura a créé trois variables puis elle a réalisé le script ci-dessous.

Créer une variable



$$2 \times 5 - 3 = 10 - 3 = 7$$

$$9 \times 7 = 63$$

Donc si l'on choisit la valeur 5 alors <u>le résultat est bien 63</u>.

2. -3+4=1

$$2 \times (-3) - 3 = -6 - 3 = -9$$

$$1 \times (-9) = -9$$

Donc si l'on choisit la valeur -3 alors le résultat est -9.

3. Parmi les expressions suivantes, recopier celle qui correspond au programme de calcul donné par le script.

$$A = (x + 4) \times (2x - 3)$$

$$B = x + 4 \times 2x - 3$$
 $C = x + 4 \times (2x - 3)$

4. Hors programme pour ce DNB blanc.

On sait que
$$A = (x + 4) \times (2x - 3)$$
.

On sait qu'un produit est nul si au moins l'un des deux facteurs est nul donc si x-4=0 et/ou si 2x-3=0Le programme donne 0 si on choisit les valeurs 4 ou 1,5.